Source code for gfail.models.jessee_2018_slim

# third party imports
import numpy as np
from mapio.reader import read
from mapio.grid2d import Grid2D

# local imports
from gfail.logbase import LogisticModelBase


COEFFS = {
    "b0": 0.0,  # intercept (already incorporated into X0)
    "b1": 1.65,  # log(pgv)
    "b2": 1.0,  # X0, all inputs without shaking
    "b3": 0.01,  # log(pgv)*arctan(slope)
}

TERMS = {
    "b1": "np.log(pgv._data)",
    "b2": "X0._data",
    "b3": "np.log(pgv._data) * np.arctan(slope._data) * 180/np.pi",
}

TERMLAYERS = {
    "b1": "pgv",
    "b2": "X0",
    "b3": "pgv, slope",
}

SHAKELAYERS = ["pgv"]

CLIPS = {"pgv": (0.0, 211.0)}  # cm/s

# Coefficients for conversion to coverage
COV_COEFFS = {"a": -7.592, "b": 5.237, "c": -3.042, "d": 4.035}


[docs]class Jessee2018Model(LogisticModelBase): def __init__( self, shakefile, config, bounds=None, uncertfile=None, trimfile=None, saveinputs=False, ): self.COEFFS = COEFFS self.TERMS = TERMS self.TERMLAYERS = TERMLAYERS self.SHAKELAYERS = SHAKELAYERS self.do_coverage = True self.prob_units = "Proportion of area affected" super().__init__( shakefile, config, bounds=bounds, uncertfile=uncertfile, trimfile=trimfile, saveinputs=saveinputs, )
[docs] def pre_process(self, key, grid): """Correct grids in model specific way.""" if key in CLIPS: clipmin, clipmax = CLIPS[key] grid._data = np.clip(grid._data, clipmin, clipmax) return
[docs] def calculate_coverage(self, P): a = COV_COEFFS["a"] b = COV_COEFFS["b"] c = COV_COEFFS["c"] d = COV_COEFFS["d"] P = np.exp(a + b * P + c * P**2 + d * P**3) return P
[docs] def modify_slope(self, slope): """Perform modifications to slope to convert to degrees.""" slope = np.arctan(slope) * 180 / np.pi return slope
[docs] def calculate_uncertainty(self): if "stddev" in self.layers: varP = read(self.layers["stddev"])._data else: varP = float(self.config["default_stddev"]) # TODO: Sort this out without having to load in all these # layers at the same time, if possible... slope = read(self.layers["slope"])._data varP = np.arctan(slope) * 180 / np.pi varP *= self.COEFFS["b6"] varP += self.COEFFS["b1"] varP **= 2 del slope std_pgv = read(self.layers["stdpgv"])._data varP *= std_pgv**2 del std_pgv if "stddev" in self.layers: stddev = read(self.layers["stddev"])._data else: stddev = float(self.config["default_stddev"]) varP += stddev**2 del stddev X = read(self.layers["X"])._data varP *= (np.exp(-X) / (np.exp(-X) + 1) ** 2) ** 2 del X if self.do_coverage: P = read(self.layers["P"])._data a = COV_COEFFS["a"] b = COV_COEFFS["b"] c = COV_COEFFS["c"] d = COV_COEFFS["d"] std1 = ( np.exp(a + b * P + c * P**2.0 + d * P**3.0) * (b + 2.0 * P * c + 3.0 * d * P**2.0) ) ** 2.0 * varP std1 = np.sqrt(std1) del P del varP else: std1 = np.sqrt(varP) del varP sigma = Grid2D(data=std1, geodict=self.sampledict) return sigma
[docs] def modify_probability(self, P): return P