Source code for gfail.models.zhu_2017

# third party imports
import numpy as np
from mapio.reader import read
from mapio.grid2d import Grid2D

# local imports
from gfail.logbase import LogisticModelBase


SHAKELAYERS = ["pgv", "pga"]

CLIPS = {
    "precip": (0.0, 2500.0),  # use mm because clipping is done on original data
    "pgv": (0.0, 150.0),
}  # cm/s

# Coefficients for conversion to coverage
COV_COEFFS = {"a": 0.4915, "b": 42.4, "c": 9.165}


[docs]class Zhu2017Model(LogisticModelBase): TERMS = { "b1": "np.log(pgv._data*(1/(1+np.power(2.71828,-2*(MW-6)))))", "b2": "np.log(vs30._data)", "b3": "precip._data", "b4": "np.minimum(dc._data, dr._data)", "b5": "wtd._data", } COEFFS = { "b0": 8.801, "b1": 0.334, "b2": -1.918, "b3": 0.0005408, "b4": -0.2054, "b5": -0.0333, } TERMLAYERS = { "b1": "pgv", "b2": "vs30", "b3": "precip", "b4": "dc, dr", "b5": "wtd", } def __init__( self, shakefile, config, bounds=None, uncertfile=None, trimfile=None, slopefile=None, saveinputs=False, ): self.COEFFS = self.COEFFS self.TERMS = self.TERMS self.TERMLAYERS = self.TERMLAYERS self.SHAKELAYERS = SHAKELAYERS self.do_coverage = True self.prob_units = "Proportion of area affected" super().__init__( shakefile, config, bounds=bounds, uncertfile=uncertfile, trimfile=trimfile, slopefile=slopefile, saveinputs=saveinputs, )
[docs] def pre_process(self, key, grid): if key in CLIPS: clipmin, clipmax = CLIPS[key] grid._data = np.clip(grid._data, clipmin, clipmax) return
[docs] def modify_slope(self, slope): """Perform modifications to slope to convert to degrees.""" slope = np.arctan(slope) * 180 / np.pi return slope
[docs] def calculate_coverage(self, P): a = COV_COEFFS["a"] b = COV_COEFFS["b"] c = COV_COEFFS["c"] P = a / (1 + b * np.exp(-c * P)) ** 2 return P
[docs] def calculate_uncertainty(self): if "stddev" in self.layers: varP = read(self.layers["stddev"])._data else: varP = float(self.config["default_stddev"]) stdpgv = read(self.layers["stdpgv"])._data varP += varP**2 + (self.COEFFS["b1"] ** 2 * stdpgv**2) del stdpgv X = read(self.layers["X"])._data varP = (np.exp(-X) / (np.exp(-X) + 1) ** 2.0) ** 2.0 * varP del X if self.do_coverage: P = read(self.layers["P"])._data a = COV_COEFFS["a"] b = COV_COEFFS["b"] c = COV_COEFFS["c"] std1 = ( (2 * a * b * c * np.exp(-c * P)) / ((1 + b * np.exp(-c * P)) ** 3.0) ) ** 2.0 * varP std1 = np.sqrt(std1) del P del varP else: std1 = np.sqrt(varP) del varP sigma = Grid2D(data=std1, geodict=self.sampledict) return sigma
[docs] def modify_probability(self, P): if "vs30max" in self.config.keys(): vs30max = float(self.config["vs30max"]) vs30 = read(self.layers["vs30"])._data P[vs30 > vs30max] = 0.0 if "minpgv" in self.config.keys(): minpgv = float(self.config["minpgv"]) pgv = read(self.layers["pgv"])._data P[pgv < minpgv] = 0.0 if "minpga" in self.config.keys(): minpga = float(self.config["minpga"]) pga = read(self.layers["pga"])._data P[pga < minpga] = 0.0 return P