Source code for gfail.models.zhu_2017_slim
# third party imports
import numpy as np
from mapio.reader import read
from mapio.grid2d import Grid2D
# local imports
from gfail.logbase import LogisticModelBase
SHAKELAYERS = ["pgv", "pga"]
CLIPS = {"pgv": (0.0, 150.0)} # cm/s
# Coefficients for conversion to coverage
COV_COEFFS = {"a": 0.4915, "b": 42.4, "c": 9.165}
[docs]class Zhu2017Model(LogisticModelBase):
TERMS = {
"b1": "np.log(pgv._data*(1/(1+np.power(2.71828,-2*(MW-6)))))",
"b2": "X0._data",
}
COEFFS = {
"b0": 0,
"b1": 0.334,
"b2": 1.0,
}
TERMLAYERS = {
"b1": "pgv",
"b2": "X0",
}
def __init__(
self,
shakefile,
config,
bounds=None,
uncertfile=None,
trimfile=None,
slopefile=None,
saveinputs=False,
):
self.COEFFS = self.COEFFS
self.TERMS = self.TERMS
self.TERMLAYERS = self.TERMLAYERS
self.SHAKELAYERS = SHAKELAYERS
self.do_coverage = True
self.prob_units = "Proportion of area affected"
super().__init__(
shakefile,
config,
bounds=bounds,
uncertfile=uncertfile,
trimfile=trimfile,
slopefile=slopefile,
saveinputs=saveinputs,
)
[docs] def pre_process(self, key, grid):
if key in CLIPS:
clipmin, clipmax = CLIPS[key]
grid._data = np.clip(grid._data, clipmin, clipmax)
return
[docs] def modify_slope(self, slope):
"""Perform modifications to slope to convert to degrees."""
slope = np.arctan(slope) * 180 / np.pi
return slope
[docs] def calculate_coverage(self, P):
a = COV_COEFFS["a"]
b = COV_COEFFS["b"]
c = COV_COEFFS["c"]
P = a / (1 + b * np.exp(-c * P)) ** 2
return P
[docs] def calculate_uncertainty(self):
if "stddev" in self.layers:
varP = read(self.layers["stddev"])._data
else:
varP = float(self.config["default_stddev"])
stdpgv = read(self.layers["stdpgv"])._data
varP += varP**2 + (self.COEFFS["b1"] ** 2 * stdpgv**2)
del stdpgv
X = read(self.layers["X"])._data
varP = (np.exp(-X) / (np.exp(-X) + 1) ** 2.0) ** 2.0 * varP
del X
if self.do_coverage:
P = read(self.layers["P"])._data
a = COV_COEFFS["a"]
b = COV_COEFFS["b"]
c = COV_COEFFS["c"]
std1 = (
(2 * a * b * c * np.exp(-c * P)) / ((1 + b * np.exp(-c * P)) ** 3.0)
) ** 2.0 * varP
std1 = np.sqrt(std1)
del P
del varP
else:
std1 = np.sqrt(varP)
del varP
sigma = Grid2D(data=std1, geodict=self.sampledict)
return sigma
[docs] def modify_probability(self, P):
if "vs30max" in self.config.keys():
vs30max = float(self.config["vs30max"])
vs30 = read(self.layers["vs30"])._data
P[vs30 > vs30max] = 0.0
if "minpgv" in self.config.keys():
minpgv = float(self.config["minpgv"])
pgv = read(self.layers["pgv"])._data
P[pgv < minpgv] = 0.0
if "minpga" in self.config.keys():
minpga = float(self.config["minpga"])
pga = read(self.layers["pga"])._data
P[pga < minpga] = 0.0
return P